MATH 54-HINTS TO HOMEWORK 4

PEYAM TABRIZIAN

Here are a couple of hints to Homework 4! Enjoy :)
Note: This homework has been trimmed a bit! For section 4.3, you only have to do 7 problems, and you can ignore 15 and for 22 you only need to do (a), (b), (c). Also, for $1,5,6$, you don't need to show your work! For section 4.4 , for 15 and 16 you only need to do (a) and (b).

Section 4.1: Vector spaces and subspaces

Remember the three techniques of showing whether something is a vector space or not!
(1) Trick 1: Show it is not a vector space by finding an explicit property which does not hold
(2) Trick 2: Show it is a subspace of a (known) vector space
(3) Trick 3: Express it in the form Span of some vectors.

Also, to show W is a subspace of V (and hence a vector space), you need to show 3 things:
(1) The $\mathbf{0}$ vector is in W
(2) If \mathbf{u} and \mathbf{v} are in W, then $\mathbf{u}+\mathbf{v}$ is in W
(3) If \mathbf{u} is in W and c is any real number, then $c \mathbf{u}$ is in W

4.1.5. Yes

4.1.7. NO! The reason is the word integer. Remember that c can in general have any real value, including $\sqrt{2}$. So ask yourself: If p is in W, is $\sqrt{2} p$ in W ? If W was a subspace, it would be!

4.1.9. Yes

4.1.15. No, the $\mathbf{0}$ vector is not in it!
4.1.17. Yes, express it as Span of 3 vectors!
4.1.21. Yes, you can either show it by using the regular 3 steps (Trick 2), or you can show it's the Span of 3 matrices.
4.1.22. Yes, use the regular 3 steps of showing that something is a subspace!

Date: Tuesday, July 3rd, 2012.

4.1.24.

(a) \mathbf{T} (this is important to remember!!! A vector isn't a list of numbers any more, it could be anything, even a function!)
(b) \mathbf{T}
(c) \mathbf{T} (of itself!)
(d) \mathbf{F} (careful, a subspace also has to be a subset! Here \mathbb{R}^{2} is not a subset of \mathbb{R}^{3}. That is, a list of numbers with 2 entries is not the same as a list of numbers with 3 entries)
(e) \mathbf{T} (again, the textbook might give you a different answer, but I agree that this is weirdly phrased! What they mean is: If \mathbf{u}, \mathbf{v} is in H, then $\mathbf{u}+\mathbf{v}$ is in H).
4.1.32. This is a bit tricky! Remember that $H \cap K$ is the set of vectors that is both in H and in K. Here's the proof that $H \cap K$ is closed under addition (hopefully that'll inspire you to do the rest):

Suppose \mathbf{u} and \mathbf{v} are in $H \cap K$. Then \mathbf{u} and \mathbf{v} are in H, so is $\mathbf{u}+\mathbf{v}$ (since H is a subspace). Also, since \mathbf{u} and \mathbf{v} are in K, so is $\mathbf{u}+\mathbf{v}$ (since K is a subspace). Hence $\mathbf{u}+\mathbf{v}$ is both in H and K, hence $\mathbf{u}+\mathbf{v}$ is in $H \cap K$.

As for the fact that the union of two subspaces is not a subspace, take H to be the x-axis, and K to be the y - axis in \mathbb{R}^{2}.

SECTION 4.3: LINEARLY INDEPENDENT SETS, BASES

Remember that a basis is a linearly independent set which spans the whole space! Equivalently, as set is a basis if the corresponding matrix A is invertible.
4.3.1. Yes (you can show directly that it is linearly independent. Since there are 3 vectors and $\operatorname{dim}\left(\mathbb{R}^{3}\right)=3$, by a theorem in Friday we know that it also spans \mathbb{R}^{3})
4.3.5. No (lin. dep. because contains the $\mathbf{0}$ vector, does span \mathbb{R}^{3} though)
4.3.6. No (even though it's linearly independent, it doesn't span \mathbb{R}^{3} because $\operatorname{dim}\left(\mathbb{R}^{3}\right)=3$ and there are only 2 vectors)
4.3.11. The system the book talks about is:

$$
\left\{\begin{array}{c}
x+2 y+z=0 \\
y=y \\
z=z
\end{array}\right.
$$

In other words, you add the two trivial equations $y=y$ and $z=z$. Then solve for x in terms of y and write your answer in parametric vector form
4.3.15. IGNORE THIS PROBLEM, unless you enjoy being tortured :) We will learn a better technique of doing this problem in section 4.6.

4.3.21.

(a) \mathbf{F} (consider the $\mathbf{0}$-vector)
(b) \mathbf{F} (no, the set could be linearly dependent!)
(c) \mathbf{T} (yes, by IMT)
(d) \mathbf{F} (as small as possible, i.e. no redundant vectors)
(e) Ignore

4.3.22.

(a) \mathbf{F} (might not span H !)
(b) \mathbf{T} (this is the spanning set theorem, theorem 5 b)
(c) \mathbf{T}
(d) Ignore
(e) Ignore
4.3.33. Suppose $a \mathbf{p}_{1}+b \mathbf{p}_{2}=\mathbf{0}$, where $\mathbf{0}$ is the zero-polynomial. Then either identify coefficients (like in Math 1B), or differentiate, to find out that $a=b=0$.
4.3.34. $\mathbf{p}_{\mathbf{3}}=\mathbf{p}_{\mathbf{1}}+\mathbf{p}_{\mathbf{2}}$, so we can eliminate $\mathbf{p}_{\mathbf{2}}$ from the span in the problem! However, $\mathbf{p}_{\mathbf{1}}$ and $\mathbf{p}_{\mathbf{2}}$ are linearly independent (show this! same technique as 33), hence they form a basis for that span.

Section 4.4: Coordinate Systems

Remember: It's easier to figure out \mathbf{x} once we know $[\mathbf{x}]_{\mathcal{B}}$ than the reverse. Also, remember that the change of coordinates matrix is just the matrix whose columns are the elements in \mathcal{B}.

It takes a code as its input and tells you which vector corresponds to that code. Its inverse matrix does what you usually want: It produces the coordinates of \mathbf{x}
4.4.1. This just means \mathbf{x} is 5 times the first vector +3 times the second vector.
4.4.5. Figure out for which coefficients x_{1}, x_{2} we have $x_{1} \mathbf{b}_{\mathbf{1}}+x_{2} \mathbf{b}_{\mathbf{2}}=\mathbf{x}$. For this, just solve a system of equations for \mathbf{x}_{1} and $\mathbf{x}_{\mathbf{2}}$.
4.4.9. Its just the matrix whose columns are the two vectors!
4.4.11. Use the formula: $\mathbf{x}=P_{\mathcal{B}}[\mathbf{x}]_{\mathcal{B}}$, where $P_{\mathcal{B}}$ is the change-of-coordinates matrix!
4.4.13. For this, first identify the polynomials with a vector, i.e. $1+t^{2}$ becomes $\left[\begin{array}{l}1 \\ 0 \\ 1\end{array}\right]$ and $1+4 t+7 t^{2}$ becomes $\left[\begin{array}{l}1 \\ 4 \\ 7\end{array}\right]$. Then find the change-of-coordinates matrix, and use the formula: $\mathbf{p}=P_{\mathcal{B}}[\mathbf{p}]_{\mathcal{B}}$ and solve for $[\mathbf{p}]_{\mathcal{B}}$. Notice how useful this identification is!
4.4.15.
(a) T
(b) F (it's the opposite: $\mathbf{x}=P_{\mathcal{B}}[\mathbf{x}]_{\mathcal{B}}, P$ takes a code as its input and spits out a vector, just like a supermarket scanner!)
(c) Ignore
4.4.16.
(a) T (yes, because for example, $\left[\begin{array}{l}2 \\ 3\end{array}\right]=2\left[\begin{array}{l}1 \\ 0\end{array}\right]+3\left[\begin{array}{l}0 \\ 1\end{array}\right]$, so the code/coefficients of $\left[\begin{array}{l}2 \\ 3\end{array}\right]$ is just $\left[\begin{array}{l}2 \\ 3\end{array}\right]$. DO NOT WRITE DOWN THIS EXAMPLE ON YOUR HW, it's just for information purposes)
(b) F (it's the opposite: it's the correspondence $\mathbf{x} \longmapsto[\mathbf{x}]_{\mathcal{B}}$ that's the coordinate mapping / producing the code mapping)
(c) Ignore
4.4.27. In other words, is the following set linearly independent or not?

$$
\left\{\left[\begin{array}{l}
1 \\
0 \\
0 \\
1
\end{array}\right],\left[\begin{array}{c}
3 \\
1 \\
-2 \\
0
\end{array}\right],\left[\begin{array}{c}
0 \\
-1 \\
3 \\
-1
\end{array}\right]\right\}
$$

Again, notice the usefulness of identifying a vector with its code!!!

